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MOTIVATION
Human Action Recognition
The human action recognition or detection problem 
involves a model classifying or describing a brief human 
motion. Below are some applications of such a system [1].

Benefits of Multi-Modal Models
Different sensors provide various strengths and weakness 
that a model can leverage to perform better in more 
situations. The table below demonstrates how the 
strengths and weakness of IMU and RGB camera 
modalities complement each other.

INTRODUCTION
Despite living in a multi-sensory world, most AI models 
are limited to textual and visual interpretations of human 
motion and behavior. Inertial measurement units (IMUs) 
provide a salient signal to understand human motion; 
however, in practice, they have been understudied due to 
numerous difficulties including the uninterpretability of 
the data to humans. In fact, full situational awareness of 
human motion could best be understood through a 
combination of visual and physical motion sensors. 

We investigate a method to merge, and transfer learned 
knowledge between IMU data and RGB videos for Human 
Action Recognition (HAR), i.e., sensor fusion and cross-
modal transfer learning. Using techniques from 
multimodal representation learning and feature-level 
sensor fusion, we create a system that trains and transfers 
knowledge when only one modality is present and fuses 
knowledge from both modalities when both are present. 
This novel sensor fusion and cross-modal transfer (SF-
CMT) system performs zero-shot HAR when transferring 
across modalities. Understanding human actions using 
IMUs (common in watches, phones, and earbuds) is a 
fundamental step in identifying subtle variations in 
motions, potentially indicating underlying health 
conditions or aging-related changes.

BACKGROUND
Sensor Fusion [2]

Cross-Modal Transfer Learning
Problem Setup:
                  𝒟𝒟𝑆𝑆 = 𝑥𝑥𝑖𝑖𝑆𝑆,𝑦𝑦𝑖𝑖𝑆𝑆 𝑖𝑖=0

𝑀𝑀 , 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑆𝑆,𝑦𝑦𝑖𝑖𝑆𝑆 ∈ 𝑌𝑌𝑆𝑆

𝒟𝒟𝑇𝑇 = 𝑥𝑥𝑖𝑖𝑇𝑇 ,𝑦𝑦𝑖𝑖𝑇𝑇 𝑖𝑖=0
𝑁𝑁 , 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑇𝑇 ,𝑦𝑦𝑖𝑖𝑇𝑇 ∈ 𝑌𝑌𝑇𝑇

Transfer Learning [3]:
 We have a model 𝑓𝑓:𝑋𝑋𝑆𝑆 → 𝑌𝑌𝑆𝑆, and we want to transfer 

its knowledge to construct a model 𝑔𝑔:𝑋𝑋𝑇𝑇 → 𝑌𝑌𝑇𝑇

• Inductive Transfer: (𝑋𝑋𝑆𝑆= 𝑋𝑋𝑇𝑇 or XS ≠ 𝑋𝑋𝑇𝑇) and 𝑌𝑌𝑆𝑆 ≠ 𝑌𝑌𝑇𝑇

• Transductive Transfer: 𝑋𝑋𝑆𝑆 ≠ 𝑋𝑋𝑇𝑇 and 𝑌𝑌𝑆𝑆 = 𝑌𝑌𝑇𝑇

• Domain Adaptation: A method of transudative 
transfer that can include adapting across domains 
in the same modality, e.g. different body positions 
of an IMU [4].

• Cross Modal Transfer: A method of transductive 
transfer where the input modalities are different 
• Instance-based transfer: Learn a mapping 

between each modality’s input space
• Feature-based transfer: Align intermediate 

representation and translate between them

Comparison

RESULTS
Our proposed model was trained on labeled RGB data 
and tested on RGB data, IMU data and Both. Testing on 
IMU data is zero shot transfer, since the system has not 
seen labeled IMU data during training.

HAR Accuracy on UTD-MHAD Dataset  [5] 

The SF-CMT model gives a 13x improvement for zero-
shot cross-modality transfer to IMU and a slight 
improvement when using both modalities, compared to 
conventional sensor fusion methods.

CONCLUSIONS
• Sensor fusion methods assume a fixed set of inputs but 

leverage multiple modalities to perform well.
• Cross-modal transfer methods only use one modality 

at a time, but they can leverage data even when one 
modality is absent.

• Our Sensor Fusion and Cross-Modal Transfer (SF-
CMT) model uses feature space representation 
learning to transfer knowledge across modalities, and 
sensor fusion to combine related features during 
inference for more robust performance depending on 
the availability of data during test time.
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Sensor Fusion
• Motivated by 

improved 
performance using 
multiple sensors

• Needs aligned 
sensor data during 
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• Cannot easily add a 
new input to the 
system

Cross-Modal 
Learning
• Motivated by lack of 

labeled data in one 
modality

• Only one modality 
used during 
inference

• Can handle new 
inputs well

𝑋𝑋 = Input Space
𝑌𝑌 = Label Space

𝒟𝒟 = Dataset
𝑆𝑆 = Source
𝑇𝑇 = Target

METHOD
Problem Statement
State of the art works leverage either sensor fusion, or 
cross modal learning, not both. Sensor fusion models fail 
to train or perform when one modality is missing. Cross-
modal transfer cannot leverage multiple modalities 
during inference when multiple are present.

Dataset
The University of Texas Dallas Multimodal Human Action 
Dataset (UTD-MHAD) consists of 27 actions performed 
by 8 subjects 4 times each, which is about 860 data 
sequences recorded in 4 modalities  [5] . We only use the 
RGB and IMU modalities.

Experiment Steps
1) 45% of data (𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑌𝑌) was used to train an RGB HAR 

model with a cross entropy loss function
2) 45% of data (𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑋𝑋𝐼𝐼𝑀𝑀𝐼𝐼) was used to align 

representations with a contrastive loss, as in CLIP [6]
3) 10% of data was used thrice, for three different tests

a) Regular model evaluation: RGB (𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑌𝑌)
b) Zero shot transfer: IMU (𝑋𝑋𝐼𝐼𝑀𝑀𝐼𝐼 ,𝑌𝑌)
c) Feature fusion: IMU+RGB (𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅 ,𝑋𝑋𝐼𝐼𝑀𝑀𝐼𝐼 ,𝑌𝑌)
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𝑋𝑋𝑠𝑠 = Source input (RGB data)
𝑍𝑍𝑇𝑇= Source feature
𝑋𝑋𝑇𝑇 = Target input (IMU data)
𝑍𝑍𝑇𝑇= Target feature
𝑌𝑌 = Task Output (Action class)
𝑓𝑓= RGB Feature Extractor (Resnet18, 1 3D conv, 1 fc)
ℎ= HAR Model (2 fc)
𝑔𝑔= IMU Feature Extractor (1 1D conv, 1 fc)

Model RGB IMU Both
Early [7] 82 % 1.7 % 77 %
Middle [7] [8] 45 % 5.2 % 5.2 %
Late [7] 94 % 5.2 % 5.2 %
ImageBind [9] 40 % 3.4 % 33%
SF-CMT (Ours) 91 % 66 % 84 %

𝑌𝑌 = Label Space
 = Sum or Average

𝑋𝑋1 = Modality 1 Space
𝑋𝑋2 = Modality 2 Space


	Slide Number 1

