
Human-in-the-loop Shared Control

Peter Du
peterdu2

Aamir Hasan
aamirh2

Abhi Kamboj
akamboj2

1. Introduction

Learning based approaches for control and decision
making have rapidly made their way into various domains
as advances in data collection, compute, and algorithmic
breakthroughs have allowed machines to perform at levels
comparable to (or better) than human experts. Despite these
advances however, there are still domains where a fully
autonomous agent with no human supervision or backup
faces hurdles from both a regulatory and public trust per-
spective. In particular, safety critical applications of au-
tonomy without human oversight remains a contested ap-
proach. The most prominent example of this can be seen
in the autonomous driving domain where companies con-
tinue to train and require “safety drivers” to monitor and
be ready to take over vehicle control at any given moment.
Even in fully autonomous products such as Waymo One’s
autonomous taxi service in Phoenix, safety drivers are often
used during inclement weather or dispatched to take control
when the vehicle senses difficulty.

The goal of our project is to look at different ways of
characterising uncertainty in an autonomous policy and use
them to develop control that is shared between the human
and the autonomous agent. To this end, we look at how this
information can be obtained from reinforcement learning
(RL) based policies and imitation learning based policies.
In the RL policies, we first consider a Deep Q-Learning
(DQN) policy without modification and use the Q-values
provided by the network. We then retrain the policy us-
ing Bayesian Deep Learning to more explicitly characterise
uncertainty. We then directly try to learn a Bayesian Neu-
ral Network policy through behaviour cloning. During run-
time, the policies are preempted when various uncertainty
thresholds are reached and a human is asked to provide the
next action. We compare the performance of these shared
policies among each other as well as a fully autonomous
policy to see which methods of requesting human input has
the best overall performance.

2. Approach

Our original proposal highlighted the following steps for
the project:

1. Setup environments on OpenAI Gym

2. Build baseline models for all environments

3. Build Bayesian models for all environments

4. Compare performance of all models for shared control.

We used the variance in Q-values as our baseline approach
and discuss it in Sec. 2.2. We explored two Bayesian
models, namely, Bayesian Deep Q-Learning and Behavior
Cloning with Bayesian DNN, which are discussed in Sec.
2.3 and Sec. 2.4 respectively.

Unfortunately, during the course of the project, our ap-
proach changed to counter unexpected subtleties in the envi-
ronments and models. The changes in the planned approach
are discussed below.

2.1. Environments

We planned on testing our models on OpenAI envi-
ronments of varying complexities, namely: Breakout and
Highway-env [3, 2]. However, as we ran experiments on the
environments we found that, even for the baseline methods,
achieving good performance was incredibly hard. Hence,
as we were forced to lower the complexity of our environ-
ments, we decided to begin testing on the discrete space
LunarLander environment.

Lunar Lander The LunarLander-v2 environment, shown
in Figure 1, is a discrete space, discrete action environment.
In this environment the agent is tasked with landing a Lan-
der at a designated (constant) area on the surface of the
moon, given control of thrusters located at the left, right,
and bottom of the lander. The state of the environment at
any time is a 8 dimensional vector and the action the agent
can perform is a 4 dimensional vector.

1



Breakout The Breakout-ram-v0 environment, shown in
Figure 2, is also a discrete space, discrete action environ-
ment. The environment emulates the popular Atari game,
Breakout, where the objective of the agent is to clear all the
colored areas on the screen by controlling a paddle, with the
ability to fire 5 balls. The state of the environment at any
time is a 128 dimensional vector and the action the agent
can perform is a 4 dimensional vector.

As discussed in Sec. 4, we were unable to successfully
achieve a good performance on the baseline for the Break-
out environment and have hence omitted the discussion of
the models’ performance on it. Similarly, we tested the
more complex HighwayEnv and were also unable to achieve
sufficient performance results.

Figure 1. The Lunar Lander environment [4]

Figure 2. The Breakout environment [3]

2.2. Vanilla Deep Q-Learning

Our first and baseline approach uses a Deep Q-Learning
network trained using the standard approach for deep Q-
learning. The q-value network is trained on the Gym envi-
ronment using a replay buffer and target network with the
following parameters:

• Number of updates: 5000

• Rollout length: 500

• Replay buffer size: 100,000

• Target copy interval: 50 updates

• Optimizer: Adam w/ learning rate 0.005

• Epsilon decay: εinit = 0.9,
decay = 0.9995,
εfinal = 0.1

Once trained, the network is ran on the environment.
However, instead of directly querying the optimal action
at each timestep, we first get the predicted Q-value corre-
sponding to each observation. The variance of Q-values are
calculated and used to determine if the state should elicit
human control. Here we make a slight modification to the
notion of “critical states” that were originally proposed in
[1]. In that work, critical states are defined by:

Scrit = {x|
(

max
a

Q(s, a)− 1

A

∑
a

Q(s, a)
)
> l}

where A is the size of the action space and l is a prede-
fined constant. In other words, the set of states where the
user should intervene are ones where the policy is suggest-
ing that a particular action has significantly higher expected
future reward than the average of other actions.

In our case, we take the variance:

Vx =

∑
a(Q(s, a)− Q̄)2

A

and approximate uncertainty when the variance is below
a predefined threshold. The main difference is that here,
we attempt to find a proxy for policy uncertainty versus
state criticality. When the variance among actions is low,
we prompt the user to provide the next action under the as-
sumption that the policy lacks confidence of the following
action. Of course this does introduce the scenario where the
expected future return is simply similar for all actions. Un-
der these scenarios, we don’t expect reduced performance
as the human should still provide the best action, however
we do expect increased human intervention requested by the
shared control scheme.

2



The approach of using vanilla Deep Q-Learning acts as a
baseline and “first effort” attempt at a shared control policy
as it does not require modification to existing policies. As
a result, the proxy for uncertainty is not ideal. In the fol-
lowing cases, we attempt to approximate uncertainty of the
policy more directly.

2.3. Bayesian Deep Q-Learning

Our next approach stays within the realm of reinforce-
ment learning policies and Deep Q-Learning. However, we
now replace the vanilla Deep Q-Learning deterministic net-
work with a Bayesian neural network. The network input
and output dimensions remain the same as before. At a
high level, the use of Bayesian layers allows us to more
directly characterise uncertainty in the network predictions
by sampling a distribution of outputs for the state. Here,
the variance of the distribution can be used to determine the
uncertainty associated with the output.

However, the use of Bayesian layers required signifi-
cantly more tuning to learn a reasonably good agent policy.
We initially tried to use the Bayesian neural network for
both target and model networks and train using the standard
Deep Q-Learning approach. The model network was used
to explore the action space and populate the replay buffer
while the target network was used to estimate the expected
future return using reward signals collected from the envi-
ronment. As the Bayesian policy now outputs a distribution
of Q-values, we took a sample of n outputs at each step
and used the mean of the samples as the predicted value.
However, with this approach, we noticed poor training be-
haviour and significant training overhead, primarily caused
by the need to sample at each step. If the number of samples
n was kept small, the resulting network has faster training
iterations but poor approximations of the actual networks
output. While the opposite resulted in extremely slow train-
ing iterations. As a result, we replaced the target network
with a deterministic Q-value network which did not require
sampling. The Bayesian model was still used to explore the
state space. The network is shown in Figure 3.

Other training parameters are given as follows:

• Number of updates: 10000

• Rollout length: 500

• Replay buffer size: 100,000

• Optimizer: Adam w/ learning rate 0.001

• Epsilon decay: εinit = 0.9,
decay=0.9996,
εfinal = 0.2

• Samples taken for loss computation: 5

Figure 3. Bayesian neural network architectures

During runtime, the Bayesian Deep Q-Learning policy
generates Q-value distributions for each state or observa-
tion. At each step, we sample N = 50 outputs from the
policy to approximate the distribution. The variance along
each action dimension is calculated from the samples and
the total variance is given by the sum of each action dimen-
sion variance. Similar to the prior vanilla Deep Q-Learning
shared control, we set a predefined variance threshold l.
However, now that we use the variance of the output distri-
bution to directly approximate uncertainty, if the total vari-
ance exceeds l, then the user is prompted to give the next
action.

2.4. Behaviour Cloning with Bayesian DNN

In contrast with the above policies, we now try to
see if directly learning a decision making policy using
Bayesian neural networks can yield better stability and per-
formance when paired with shared human control. Un-
like the Bayesian Deep Q-Learning approach, we no longer
learn a model to output expected future rewards by training
with reinforcement learning (i.e. letting the agent explore
on its own). Instead, we first train a deterministic expert
policy using RL and then use it to collect data for a super-
vised learning task.

As mentioned in class, purely using the expert to provide
data samples may result in poor performance as the model is
shown a limited set of scenarios and is likely to enter a state
which it has not been trained on. To alleviate some of this
issue, we use an epsilon greedy exploration approach where
the training data rollouts are obtained by using actions from
the model policy with epsilon probability. During dataset
collection, this causes the agent to explore a greater number
of “random” states which may not yield high reward. We
note that by the nature of the shared control policy, it should
be able to better handle this (lack-of) exploration problem.
Unlike a standard DNN policy trained via behaviour cloning
(BC), the Bayesian Neural Network policy should be able to
encode the uncertainty of its outputs. The states where the

3



policy has seen little to no training data should yield higher
variance in the output distribution, which are the very states
a human will be asked to intervene.

As with Bayesian Deep Q-Learning, we found that train-
ing a Bayesian BC policy was also slightly tricky and re-
quires more tuning that initially expected. The number of
samples taken when calculating the loss for each training
data point was made to be double that of when training
Bayesian Deep Q-Learning. The overall network architec-
ture is shared and shown in Figure 3. The setup of the shared
controller was kept the same. During runtime, we sample 50
outputs from the policy at each timestep and use the sam-
ples to calculate the variance along each action dimension.
The total variance is given by the sum along each dimen-
sion and the human is prompted for the next action if this
exceeds a predefined threshold l.

• Number of updates: 5000

• Rollout length: 500

• Optimizer: Adam w/ learning rate 0.005

• Epsilon decay: εinit = 0.9,
decay = 0.9995,
εfinal = 0.2

• Loss: Cross entropy loss

• Samples taken for loss computation: 10

3. Results

In this section we present the experimental results from
using the various forms of uncertainty characterization in
order to prompt human intervention. An important detail
to note for these results regards the variation in the poli-
cies themselves. For example, we noticed that the use of
Bayesian layers caused more instability during training and
required more tuning to yield reasonable performance. This
was something we did not expect to play as large a roll as
it did during our initial proposals and updates. As a re-
sult, we will compare both the performance of each uncer-
tainty characterization among each other, and the relative
performance differences between each policy when operat-
ing with and without shared control. We hope that the latter
will help to be more representative of the impact of the un-
certainty metric on shared control without relying heavily
upon the performance of the base policy.

3.1. Setup

In order to minimize human bias in the environments,
we first allow the human to manually control the environ-
ments and practice achieving high reward at the task. This

Figure 4. The rewards accrued by each model

process took around 30 mins and once the human was fa-
miliar with the controls and behaviour of the environments,
we had them get accustomed to the shared control scheme.
In these practice runs, the controllers from the prior section
were used, however, the human was prompted for input at
random timesteps instead of the system using an uncertainty
metric. The goal here was to get the human user to feel
comfortable with providing input at a given notice. Once
this was complete, we collected data from the full shared
control scheme where the human was asked for input when
an appropriate uncertainty threshold was reached. For each
control scheme, we run two sets of 8 trials and record the
rewards obtained. The first set uses only the trained policy
while the second set uses shared control.

3.2. Comparison of Policies with Shared Control

Figures 4 and 5 shown below illustrate the results of the
experiments. Figure 4 shows a box plot of the rewards by
each model with and without shared control. Figure 5 shows
the number of interventions by each model. The results are
further analyzed and discussed in section 4.2 and 4.3.

4. Discussion

4.1. Challenges with Testing Environments

As mentioned earlier in Sec. 2, we were unable to suc-
cessfully train the baseline model on the Breakout environ-
ment. We tried training a DQN model on the environment
while varying the hyperparameters such as learning rate, re-
play buffer size, epsilon decay, target network update fre-

4



Figure 5. The number of interventions needed by each model dur-
ing shared control

quency, Q network update batch size, number of updates,
and the rollout length over a wide range of values. We also
consulted several online blogs as well as Deepmind’s origi-
nal implementation and made changes such as counting the
loss of a life (the need to fire multiple balls). Even after
spending multiple weeks of compute with a powerful GPU
on training, we were still unable to get the model to get de-
cent reward on the environment. We suspect that the more
complex the environments become, the fine-tuning required
to train models to achieve good performance on them.

4.2. Rewards

Figure 4 show the rewards obtained by the various con-
trol schemes in each of the 8 trials in the lunar lander envi-
ronment. One shared characteristic among the trained con-
trollers is the tendency to land with higher velocity and a
harsher impact. As a result, the controllers on their own tend
to achieve a moderate negative overall reward (penalized by
the harsh landing velocity). Instances where the controller
fails occur when the lander is far away from the designated
landing region or is unable to land in an upright position.
These scenarios result in negative rewards of significantly
larger magnitude.

When comparing absolute performance, we see that the
vanilla DQN with Q-value variance results in the highest
reward when using shared control. In these trials, there are
also two instances where the system prompts the user for in-
put near the end of the landing sequence and the user is able
to reduce landing velocity significantly, resulting in high
positive reward. However, we note that the performance
of the vanilla DQN controller was also better than those
of the Bayesian variety. When comparing relative perfor-
mance increase, adding shared control to behaviour cloning

with Bayesian NN saw the highest increase. Indeed, we see
that Bayesian BC on its own has significant variance in its
performance and far more “outright” failures than the other
two approaches. When shared control is enabled, the policy
has high uncertainty in regions where it has not explored
sufficiently and the human is able to compensate in these
scenarios.

4.3. Intervention Frequency

In Figure 5 we track the number of human interventions
each scheme required during the trials. The number of inter-
ventions can significantly skew performance and usability
depending on when and how often they occur. For example,
a large number of rapidly occurring intervention requests
will bias towards the human’s role in the final performance.
Across all three schemes, the number of prompts given are
similar and averaged around 6-8 interventions required for
each trial. A similar rate of prompts helps ensure the reward
obtained using shared control with the varying policies are
comparable and not being artificially inflated by trivially re-
quiring the human to control most of the trials. The inter-
vention frequency can be balanced and traded off with the
overall reward by changing the uncertainty thresholds. In
general, an increase in reward is seen when the threshold is
decreased as the human is given more control.

5. Conclusion

Overall, our project attempts to determine the best way
to develop shared control between an autonomous agent and
a human. We investigated shared control by looking at dif-
ferent ways to characterize uncertainty in 3 different neural
networks: Vanilla Deep Q-Learning, Bayesian Q-Learning,
and Bayesian Behavior Cloning. We implement the shared
control policy and test it in 8 user trials per policy, then com-
pare the results with their corresponding baseline fully au-
tonomous policies. The results show that Vanilla DQN has
the best performance with the baseline and shared control
policy when compared with Bayesian DQN and Bayesian
BC. However, Bayesian BC has the largest improvement
from its own baseline by implementing our shared con-
trol policy. Our study implicates that higher variance poli-
cies such as Bayesian BC can be significantly improved on
with shared autonomy mechanism as presented in this pa-
per. Overall, our study demonstrates how shared autonomy
mechanisms can improve performance of an autonomous
task, especially for high variance models. This improve-
ment is important to consider when designing autonomous
systems such as autonomous vehicles, mobile robots, indus-
trial manipulators, or many other systems that may require
human intervention.

5



6. Statement of Individual Contribution
All members contributed equally in all aspects of the

project, which were, running and designing the experi-
ments, writing and compiling the report, and preparing the
in-class presentation.

References
[1] Sandy H. Huang, Kush Bhatia, Pieter Abbeel, and

Anca D. Dragan. Establishing appropriate trust via crit-
ical states. CoRR, abs/1810.08174, 2018.

[2] Edouard Leurent. An environment for autonomous
driving decision-making. https://github.com/
eleurent/highway-env, 2018.

[3] OpenAI. A toolkit for developing and comparing rein-
forcement learning algorithms.

[4] Shiva Verma. Train your lunar-lander: Reinforcement
learning, Oct 2021.

6

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

