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Abstract

Graphics Processing Units (GPUs) and manycore processors
in general are some of the most important and powerful tools
in modern computing as their ability to massively parallelize
computations is an excellent way to accelerate computa-
tionally intensive programs. Due to the massive presence of
GPUs in heterogeneous systems, the large design space of
parallel programming, and the substantial variance in per-
formance between low and high end implementations of
GPU kernels, effectively developing this software is a critical
challenge. The development and optimization process can be
automated. Successful projects in this area take advantage of
the affine properties of the input functionality as identified
by polyhedral models in order to output optimized kernels
for manycore processors.

This paper proposes ScaleCUDA, a tool for automated
GPU code (CUDA) generation and optimization. ScaleCUDA
looks to take advantage of two essential components of high
end optimization: identification of affine properties through
polyhedral modelling and analysis at multiple levels of ab-
straction. It will do so by way of ScaleHLS[7], a high-level
synthesis (HLS) design space exploration tool. ScaleHLS uses
MLIR, a multi-level compiler infrastructure, in order to effec-
tively explore the design space at various levels of abstrac-
tion and create an optimized HLS design. To translate C++ or
HLS C++ input into the desired optimal CUDA output, Scale-
CUDA bridges the gap between the polyhedral and CUDA
representations in MLIR while taking advantage of the HLS
optimization and design space exploration tools of ScaleHLS.
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We test the pipeline with GEMM C++ code and show sim-
ilar performance to code directly compiled and optimized
through NVIDIA cuda frameworks.

Our implementation is opensourced and can be accessed
on the ScaleCUDA branch here: !. Our experimentation code
is also provided here: 2.
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1 Introduction
1.1 Motivation

The goal of ScaleCUDA is to provide a framework for quickly
developing powerful GPU software that approaches the achiev-
able GPU performance ceiling. This is possible based on the
success of the previous project, Polyhedral Parallel Code
Generation (PPCG)[6], which was able to use polyhedral rep-
resentations of C++ code to generate CUDA kernels which
compete with high end and manually optimized libraries as
seen in Figure 1.

The effectiveness of MLIR as an optimizer gives reason
to believe that an MLIR-based implementation of the poly-
hedral conversion concept can be even more effective than
the original version. Frameworks such as Pytorch, a python
library for machine learning, interfaces directly with NVVM
to develop CUDA binaries. However, this direct link bypasses
many dialects in the MLIR framework that could be leveraged
to optimize the output which ScaleCUDA plans to utilize.

A few previous works have attempted to leverage MLIR
to optimize code on a GPU, however, none have integrated
an HLS flow and focused on HLS based performance opti-
mizations (e.g. loop perfectization, loop reordering, etc.) as
ScaleCUDA intends to do. IREE [5] focuses on end to end
optimizations for embedded computational systems. Further-
more, [2] focuses on low level MLIR matrix multiplication
acceleration using the warped matrix multiplication opera-
tion (wmma).

https://github.com/akamboj2/scalehls/tree/scalecuda
Zhttps://github.com/akamboj2/CuBLAS_ScaleCUDATesting
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Figure 1. PPCG Performance:[6] This graph shows a
comparison of optimized code on GPUs for exsiting works.
CUBLAS, a framework for linear algebra made by nvidia
compiles code directly onto an NVIDIA GPU, thus
indisputably sets the performance ceiling for GPUs.
Nonetheless, PPCG is able to reach very similar
performance. ScaleCUDA aims to perform similarily well
through the MLIR framework.

Furthermore, using MLIR will allow ScaleCUDA to take
advantage of the existing optimization and design space
exploration functionalities developed in ScaleHLS. Even if
ScaleCUDA is not able to top highly refined implementations
in terms of performance, the much faster development cycle
would make ScaleCUDA a useful tool for two reasons. Firstly,
the fast turn around time coupled with near-optimal perfor-
mance would be very helpful for design space exploration as
a very accurate heuristic/evaluation of the GPU for a given
task. Secondly, developers who are not knowledgeable on the
niche and minute optimizations of CUDA would be able to
access their benefits without the required time and learning,.

1.2 Objective

As a GPU programming framework, ScaleCUDA is aiming
to generate CUDA implementations which compete with
the premier CUDA libraries such as cuBLAS or cuDNN.
ScaleCUDA should also top the preceding project, PPCG.
This paper also looks to demonstrate the effectiveness of
the ScaleHLS optimization and design space exploration fea-
tures.

1.3 Contributions

We extend ScaleFlow by adding a CUDA emitter. Specifi-
cally, we interface the Affine and NVVM dialects through
the MLIR framework. Our contribution is the MLIR trans-
lation between these dialects. The important contributions
ScaleCUDA will reference are ScaleHLS, PPCG, MLIR as a
whole, the Affine dialect, the NVVM and NVGPU dialects,
and Polygeist. It is the interface between these contributions
that ScaleCUDA focuses on.
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Figure 2. Basic Block Diagram of ScaleCUDA within
MLIR: The black lines and boxes represent preexisting
components in the MLIR framework. The blue arrows
represent ScaleCUDA proposed contributions. Polygiest
translates from C++ to the Affine dialect. ScaleHLS
translates from HLS C++ to the HLS dialect and the Affine
dialect. ScaleCUDA’s current implementation lowers the
Affine dialect to the NVVM GPU Dialect and future
extensions may convert from HLS to NVVM.

Y

2 ScaleCUDA Overview

ScaleCUDA takes advantage of many existing utilities sur-
rounding MLIR and revolves around a new link between
different components. MLIR[3] is a framework designed to
build scaleable and modular compiler systems using dialects
to communicate between intermediate representations (IRs).
Figure 2 shows how ScaleCUDA fits into the existing frame-
work.

We leverage the existing utilities ScaleHLS and Polygeist[4]
to complete the ScaleCUDA framework. Polygeist deter-
mines a polyhedral representation of input C++ and out-
puts it into the Affine dialect. On the other hand, ScaleHLS
provides an HLS IR which can be translated into the Affine
dialect within MLIR. MLIR also contains two GPU-oriented
dialects: NVVM and NVGPU[1]. These two dialects can be
compiled into deployable CUDA kernels.

ScaleCUDA implements a translation between the Affine
dialect and the GPU NVVM dialects, completing the path-
ways for both HLS C++ and C++ to be optimized and trans-
lated into GPU compatible code. The Affine dialect specifi-
cally is very useful because it uses a polyhedral representa-
tion which is a critical tool for exposing parallelisms.

3 Methodology

The translation between dialects in MLIR consists of a se-
ries of "passes” and "pass pipelines". Passes traverse the in-
put code at a desired depth and mutate in some way. Pass
pipelines are collections of passes applied sequentially [3].
The translation between Affine and GPU is also performed
as a pass. The existing pass which performs this translation
is called convert-affine-for-to-gpu. This pass converts affine
for loops into dimensions for a GPU kernel, and converts the
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Figure 3. ScaleCUDA Pipeline Diagram: This block
diagram shows the entire ScaleCUDA pipeline. ScaleCUDA
lowers the Affine dialect to the GPU dialect leveraging
existing ScaleHLS passes and custom passes.

contents of the loops into the kernel code. While this is an
important idea for this translation, this pass alone is rather
naive. It requires manual input of the dimensionality of the
GPU kernel and also applies no optimizations.

ScaleCUDA looks to utilize the convert-affine-for-to-gpu
pass and build a pass pipeline around it, adding passes to
increase functionality and further optimization. Implement-
ing this pass will complete the chain of translations within
MLIR to take some HLS C++ or C++ input and convert it
into optimized GPU software.

The first step is to use ScaleHLS or Polygeist to generate
Affine dialect code. Next, the ScaleCUDA pipeline is applied
to produce GPU dialect output. From the GPU dialect there
are multiple routes the user can take to produce binaries for
GPUs. We test and report the results of one of these routes as
described in the experiments section. The overall ScaleCUDA
pipeline is shown in Figure 3.

3.1 AffineLoopPermute

The first custom pass created for the ScaleCUDA pipeline
is the AffineLoopPermute pass. One of the biggest insuffi-
ciencies of the convert-affine-for-to-gpu pass is its naievete.
The pass does not consider memory depedencies or true
parallelizabilities of affine loops.

For example in a matrix multiplication, as shown in the
Affine IR code®, the innermost loop is not parallelizable be-
cause of the sequential addition to the same output, however
it is categorically and technically affine. So, the convert-
affine-for-to-gpu pass will distribute this inner loop among
different threads in the GPU without second thought, result-
ing in a large set of race cases and inaccuracies.

The AffineLoopPermute pass we created addresses this
issue in 3 main steps:

1. It first iterates over all instructions looking for nested
for loops and creating a list of affine for loops.

3https://github.com/akamboj2/scalehls/blob/scalecuda/samples/
polybench/gemm/test_gemm_mult_out.mlir

2. Next, it iterates over this list of affine for loops, check-
ing for memory dependencies and parallelizability of
each loop, marking each loop as either parallel or not
and keeping a tally of the number of parallelizable
loops.

3. Lastly, it generates a loop permutation map such that
the truly parallel loops are the outermost.

Having the parallelizable loops on the outside of the nest
ensures that when the conversion to a GPU grid and kernel
takes place, the dependent loops are preserved within the
kernel while the parallel loops are the ones split up and
parallelized. The tally of parallel loops can be fed into the
convert-affine-for-to-gpu pass as arguments to ensure the
sequential loops are left untouched.

3.2 ScaleCUDA Pipeline

The ScaleCUDA Pipeline as a whole is framed around the
AffineLoopPermute and convert-affine-for-to-gpu passes. Be-
tween the two, it is possible to create a functional GPU output
given an Affine dialect input, but not a high performing out-
put. ScaleCUDA utilizes optimizations provided by ScaleHLS
to enhance the generated software. Specifically, the ScaleHLS
pipelines for Loop Tiling and Local Buffers are employed.

3.2.1 Loop Tiling. Loop tiling is an important feature be-
cause it allows for its user to take advantage of temporal and
spacial locality. Temporal and spacial locality are especially
critical for GPUs because of the multi-layer cache system
found in GPUs. Specifically, the shared memory between
cores on the same SM can be fully utilized with tiling. In
fact, loop tiling is considered one of the primary tools in the
GPU/CUDA developers toolbox in terms of optimization.

The loop tiling ScaleHLS pipeline is applied before the
AffineLoopPermute pass. This way, the parallelizable tiles
can be distributed as thread blocks in the GPU’s thread grid.
In other words, each SM will represent a tile and the cores in
the SM will each compute one entry within the tile. This de-
sign of matching tiles to thread blocks is commonly utilized
by GPU Programmers, and ScaleCUDA is able to generate
this automatically.

3.2.2 Local Buffers. In order to maximize the loop tiling
paradigm’s performance, the kernel must load the relevant
information of the tile into shared memory, so all cores in
the SM (entries in the tile) can reuse data loaded in from
global memory. High memory reuse is highly sought after
in GPU kernel development.

The ScaleCUDA pipeline takes advantage of ScaleHLS’
local buffer passes. The local buffer pass pipeline is applied
to the permuted and tiled affine loops. However, ScaleCUDA
employs a mechanism to ensure the local buffers are only
created for the non-parallelizable loops. This means that the
local buffers are only present within the kernel deployed
on the GPU - creating buffers in the outer loops which are
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distributed across the GPU would not make sense. These
local buffers are then converted into instantiations of shared
memory within the GPU, maximizing data reuse.

3.3 Experiments

We conduct experiments on two sets of GEMM C++ code
on an NVIDIA 3080 RTX GPU. First simple matrix element-
wise addition and second matrix multiplication. Although
these are very basic operations, they are fundamental to deep
networks and modern day computing application, so being
able to efficiently perform them is vital.

The experiments are conducted on each matrix operation
code as follows:

1. Compile the GEMM C++ code to an Affine represen-
taiton in MLIR using Polygeist

2. Pass the Affine representation through the ScaleCUDA
pipeline includinhg:
a. Existing scaleHLS loop optimizations (perfectization,

ordering, tiling, etc.)

b. Our custom passes (i.e. AffineLoopPermute pass)
c. Local buffer allocation passses
d. Existing GPU passes (e.g. AffineForToGPU)

3. Exit the GPU MLIR code through an existing GPU to
executable pipeline from the buddy-mlir repo *

4. Time the previous step to deduce latency and perfor-
mance and compare to CuBLAS and existing cuda op-
timizations.

The intermediate results of can be viewed on our offical
Github Repo. For example, the ScaleCUDA optimized addi-
tion can be seen at https://github.com/akamboj2/scalehls/
blob/scalecuda/samples/polybench/gemm/test_gemm_add_
out.mlir and multiplication at https://github.com/akamboj2/

scalehls/blob/scalecuda/samples/polybench/gemm/test_gemm_

mult_out.mlir

4 Results
4.1 Matrix Addition

As described in 3.3 we perform 5 trials of element-wise matrix
addition on 3 different optimization frameworks: ScaleCUDA
(ours) and CuBLAS.

CuBLAS ° is an implementation of Basic Linear Algebra
Subprograms (BLAS) on top of the NVIDIA CUDA runtime.
It is a handwritten library used to optimize C code directly
on a GPU. We write a simple matrix addition code using this
library to compare against ScaleCUDA.

The results shown in Figure 4 demonstrate that Scale-
CUDA performs slightly better than the existing baselines,
however it has a slightly larger variance. This implies that
the performance is not very consistent. We are skeptical of

4https://github.com/buddy-compiler/buddy-mlir
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Figure 4. ScaleCUDA Matrix Addition Performance:
The box plot above shows a comparison of performance of
ScaleCUDA and CuBLAS. ScaleCUDA performs marginally
better, however, with a higher variance.
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Figure 5. ScaleCUDA Matrix Multiplication
Performance: The box plot above shows a comparison of
performance of ScaleCUDA, CuBLAS, and the CUDA MMA
Op across 5 matrix multiplication trials for each method.
ScaleCUDA shows a slightly higher performance in this
simple metric.

these results as the handwritten CuBLAS library should per-
form better than our MLIR lowering of matrix addition. We
expound on this further on this in Section 5.

4.2 Matrix Multiplication

As described in 3.3 we perform 5 trials of matrix multipli-
cation on 3 different optimization frameworks: ScaleCUDA
(ours), CuBLAS, and using the CUDA MMA operation in
MLIR.

Similar to the previous section using CuBLAS we write
a simple matrix multiplication code using this library to
compare against ScaleCUDA. However, for matrix multipli-
cation the NVVM dialect has a an inbuilt function to perform
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mma (matrix-multiply accumulate) and wmma (warped ma-
trix multiply and accumulate) °. We use the buddy-mlir’s
gpu-mma.mlir 7 which utilizes the nvvm mma operation as
another baseline to compare our performance against.

The results shown in Figure 5 are also similar to the pre-
vious section ScaleCUDA performs slightly better than the
existing baselines, however it has a slightly larger variance.
This implies that the performance is not very consistent. We
are skeptical of these results as the hand designed CuBLAS
library should perform better than our MLIR lowering of
matrix multiplication. We expound on this further on this in
the next Section 5.

5 Limitations

Due to time constraints we were not able to get the Scale-
CUDA pipeline to generate and run the code on the GPU.
Thus, after generating the GPU dialect output, the code was
manually modified to function with the buddy-mlir’s GPU
execution pipeline. When attempting to integrate GPU exe-
cution directly into our pipeline we received various MLIR
errors and despite engaging with MLIR community experts,
we were unable to resolve the errors within the project’s
time frame.

Although the main computational enhancements (loop
permutation, tiling, bufferization) was not altered, the modi-
fications to be able to run our optimized code on the GPU
could have unintentionally changed the performance results.
Nonetheless, we believe the reported results show a rela-
tively accurate (but weak) representation of how our pipeline
compares with optimal CUDA matrix multiplication. More
experiments and development must be done before strong
conclusions should be drawn from this data.

Furthermore, this was tested on medium to small matrices
(16x16, 256x256, 8192x8192). This is why the results are on
the order of MFLOPS in Figures 5,4 as opposed to GFLOPS
as shown in previous works (Figure 1). Results may vary for
larger matrices, as the GPU may have more parallelization
power and this should be further investigated. This is also
potentially the reason why our framework performed better
than the CuBLAS library which theoretically is likely to be
an upperbound on our performance.

Despite the lack of experiments, visual inspection shows
the potential of the ScaleCUDA framework.

6 Future Work

There are many potential extensions that can be made to the
ScaleCUDA framework, aside for more rigorous experimen-
tation and completion of the current proposed framework
as described in Section 5.

Shttps://mlirllvm.org/docs/Dialects/NVVMDialect/#nvvmwmmamma-
mlirnvvmwmmammaop

https://github.com/buddy-compiler/buddy-
mlir/blob/main/examples/MLIRGPU/gpu-mma.mlir

One direct extension of ScaleCUDA is being able to sup-
port more operations, e.g. convolutions. Theoretically, con-
volutions are a series of for loops performing dot products,
so the current framework should be able to optimize them
fairly well, however, at first attempt ScaleCUDA was running
into errors when optimizing a convolution, thus more effort
needs to be focused into this extension.

Another, potential extension of ScaleCUDA is optimizing
shared memory resources amongst threads on a GPU. If the
same data needs to be used on multiple GPU threads that data
should be stored in a shared memory buffer that multiple
threads can access. A ScaleCUDA extension should be able
to recognize which data should be shared and create shared
buffers accordingly.

7 Conclusions

Overall, state-of-the-art deep learning performance on a GPU
is often driven by hand tuned highly optimized libraries.
This hinders scalability and limits the modularity and re-
usability of that optimized code. MLIR is an intermediate
representation infrastructure built on the LLVM compiler
infrastructure to promote code portability and optimality
across different languages and devices.

We use MLIR to develop ScaleCUDA, a pipeline aimed
at leveraging the MLIR infrastructure to optimize code on
a GPU. We use the existing ScaleHLS and Polygiest frame-
works to create and test ScaleCUDA. Our rough preliminary
results on element-wise matrix addition and matrix multipli-
cation demonstrate ScaleCUDA’s potential as a powerful de-
sign space exploration and optimization tool. We believe that
these results may motivate future research and development
on automatic code generation for GPU code optimization
using an IR infrastructure.
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